El buscador místico

Busca en el blog:

Búsqueda personalizada

Agujeros negros, big bang y geometría cuántica

Published by Buscador under , on 8:06

Una de las predicciones más asombrosas de la teoría de la gravedad de Einstein es la existencia de agujeros negros. La otra gran predicción es que el Universo tuvo un origen en el tiempo. Estas dos predicciones, sin embargo, también marcan el fin de la teoría. Para resolver los problemas que supone el origen violento del Universo (Big Bang) y las densidades de energía extremas del núcleo de un agujero negro, es necesaria una teoría que combine con éxito las propiedades cuánticas de la materia con la gravedad. ¿Tenemos ya esa teoría?


Los agujeros negros se pueden formar de muchas formas. La más habitual, quizá, sea por colapso de una estrella. Las estrellas son estables porque la presión hacia afuera generada por las reacciones nucleares del interior compensa el tirón hacia abajo de la gravedad. El combustible inicial es hidrógeno, que gracias a la fusión nuclear se va convirtiendo poco a poco en helio. Cuando el hidrógeno se gasta, la estrella "pierde fuelle" y la gravedad hace que se comprima, lo que aumenta la presión y la temperatura hasta que el helio comienza a fusionarse para producir otros elementos. Este proceso de quemado y compresión continua hasta que la estrella ya no puede fusionar nada más. Es entonces cuando la fuerza de la gravedad puede vencer a la presión nuclear.

Otro agujero negroSi la estrella tiene suficiente masa, el colapso es inevitable: toda la materia contenida en la estrella cae hacia el centro y se comprime en un punto de densidad infinita. A este punto de densidad infinita se le llama "singularidad". El proceso de colapso deforma la estructura del espacio-tiempo de una manera dramática, pues alrededor de la singularidad se forma una región de la que nada puede salir, ni siquiera la luz. La superficie de esta región se conoce como "horizonte de sucesos" y básicamente funciona como una membrana que solo puede atravesarse en un sentido: todo entra pero nada sale. Por esta razón a este tipo de objetos se les llama agujeros negros.

La formación de una singularidad es un gran problema para la Física. Nuestras teorías sobre la materia se formulan sobre un espacio-tiempo y la singularidad de un agujero negro es una región en la que el espacio-tiempo no está bien definido. Por tanto, la formación de un agujero negro implica situaciones para las que nuestras teorías actuales no están preparadas.

Algo similar ocurre cuando estudiamos el origen del Universo. Aunque nuestras teorías están en excelente acuerdo con las observaciones, la teoría de la gravedad de Einstein predice que en el instante inicial todo estaba comprimido a volumen cero, lo cual implica una singularidad y es señal de que la teoría se ha llevado más allá de sus límites naturales de aplicabilidad.

Para comprender mejor el origen del Universo y la estructura de los agujeros negros hace falta una teoría que cure los problemas de la Relatividad General de Einstein. La Geometría Cuántica, o Gravedad Cuántica de Lazos, es una de las teorías actualmente más avanzadas en esta dirección.

Abhay Ashtekar, fundador de LQGLa Gravedad Cuántica de Lazos (LQG por sus siglas en inglés) es una teoría que combina con éxito la interpretación geométrica de la gravedad introducida por Einstein con la física cuántica, la teoría que explica las propiedades e interacciones de la materia microscópica. En esta teoría, el espacio-tiempo aparece como un entramado de átomos o celdas de espacio-tiempo cuyas áreas y volúmenes están cuantizadas. La cuantización implica que sólo pueden existir ciertas áreas y volúmenes que cumplan unas determinadas reglas.

La existencia de un valor mínimo no nulo para el área y el volúmen supone una vía de escape para los problemas de densidad infinita a los que nos conduce la teoría de Einstein. Usando las técnicas de LQG, recientemente se ha demostrado que la singularidad del Big Bang puede evitarse mediante lo que se conoce como Big Bounce (o gran rebote). El Big Bounce tiene grandes repercusiones físicas y filosóficas, pues implica que antes de que el Universo comenzara a expandirse hubo una época previa en la que se contraía. La contracción alcanzó un volumen mínimo, rebotó y entonces dió lugar al Universo en expansión en el que vivimos.

Big bounceAunque ya es posible avanzar algunos resultados sobre el origen del Universo, la teoría LQG aún necesita resolver muchos problemas técnicos para poder convertirse en la teoría de gravedad cuántica ansiada por todos. Para discutir sobre estos temas y celebrar el 25 aniversario de la teoría, cerca de 200 investigadores de todo el mundo activos en este área se han reunido estos días en la sede central del CSIC en Madrid. El congreso se llama Loops'11 y ha contado con el apoyo del MICINN y el Centro Nacional de Física de Partículas, Astropartículas y Nuclear (CPAN), entre otros.

www.gentedigital.es/

0 comentarios :

Publicar un comentario