UN POCO (MAS) DE NUMEROLOGIA
Published by Buscador under Numerología on 4:44
En una de las primeras entradas del año a Tellagorri le dio por mentar la numerologia. Recorde un largo parrafo del Pendulo de Foucault, de Umberto Eco, que describe muy bien esta disciplina esoterica. Es larga, pero merece la pena. Dice asi:
--El autor de este libro debería recordar que Piazzi Smyth descubre las medidas sagradas y esotéricas de las pirámides en 1864. Permítanme ustedes que sólo dé números enteros, a mi edad la memoria empieza a fallar... Es singular que su base sea un cuadrado de 232 metros de lado. Originariamente, su altura era de 148 metros.
Si lo expresamos en codos sagrados egipcios, tenemos una base de 366 codos, que es el número de días del año bisiesto. Según Piazzi Smyth, la altura multiplicada por diez a la novena da la distancia entre la Tierra y el Sol: 148 millones de kilómetros Que era una buena aproximación para la época, ya que actualmente esa distancia se calcula en 149 millones y medio de kilómetros, y nada nos asegura que los modernos estén en lo cierto. La base dividida por el ancho de una de las piedras da 365. El perímetro de la base es de 931 metros Si se divide por el doble de la altura da 3,14, el número ¶. ¿Deslumbrante verdad?
Belbo sonreía sin saber qué decir.
--¡Imposible! Dígame cómo hace para...
--No interrumpas al doctor Aglie, Jacopo --dijo solícito Diotallevi. Aglie le agradeció con una sonrisa cortés. Hablaba dejando vagar su mirada por el cielo raso, pero me dio la impresión de que no era un examen ocioso ni casual. Sus ojos seguían una pista, como si estuviesen leyendo en las imágenes lo que fingía exhumar de la memoria.
Ahora bien, del ápice a la base, la medida de la Gran Pirámide, en pulgadas egipcias, es de unas 161.000.000.000. ¿Cuántas almas humanas han vivido en la tierra desde Adán a nuestros días? Una buena aproximación se situaría entre las 153.000.000.000 y las 171.900.000.000.
--Supongo que su autor sostiene que la altura de la pirámide de Keops es igual a la raíz cuadrada del número que expresa la superficie de cada uno de los lados. Desde luego,
las medidas deben tomarse en pies, unidad más afín al codo egipcio y hebraico, y no en metros, porque el metro es una medida abstracta inventada en la época moderna. El codo egipcio equivale a 1,728 pies. Por lo demás, si no conocemos las alturas exactas, podemos remitirnos al pyramidion, que era la pequeña pirámide situada,en el ápice de la gran pirámide y que constituía su punta. Era de oro o de otro metal que brillase al sol. Pues bien, coja usted la altura del pyramidion, multiplíquela por la altura de toda la pirámide, multiplíquelo todo por diez a la quinta potencia y tendrá la longitud de la circunferencia ecuatorial.
Eso no es todo, si coge el perímetro de la base y lo multiplica por veinticuatro al cubo dividido por dos, obtiene el radio medio de la Tierra. Además, la superficie cubierta por la base de la pirámide multiplicada por 96 por diez a la octava da ciento noventa y seis millones ochocientas diez mil millas cuadradas, que corresponden a la superficie de la Tierra. ¿Es así?
A Belbo le gustaba mostrar su asombro, normalmente, con una expresión que había aprendido en la filmoteca, al ver la versión original de Yankee Doodle Dandy, con James Cagney: “I am flabbergasted!” Y eso fue lo que dijo. Evidentemente, Aglie conocía bien incluso el inglés coloquial, porque no logró ocultar su satisfacción, sin avergonzarse por ese acto de vanidad.
--Estimados amigos --dijo--, cuando un señor, cuyo nombre no conozco, se lanza a escribir sobre el misterio de las pirámides, sólo puede repetir lo que ya saben hasta los niños. Me hubiese sorprendido si hubiera dicho algo nuevo.
--O sea --aventuró Belbo--, que este señor se limita a decir unas verdades comprobadas.
--¿Verdades? --rió Aglie, mientras volvía a abrirnos su caja de puros artríticos y deliciosos--. “Quid está veritas”, como decía un conocido mío hace tantísimos años. En parte se trata de un cúmulo de tonterías. Para comenzar, si se divide la base exacta de la pirámide por el doble exacto de la altura, calculando incluso los decimales, no se obtiene el número ¶ sino 3,1417245. La diferencia es pequeña, pero importante. Además, un discípulo de Piazzi Smyth, Flinders Petrie, que también fue quien midió Stonehenge, dice que cierto día sorprendió al maestro limando los salientes graníticos de la antecámara real, para que sus cálculos encajaran... Quizá-no fueran más que habladurías, pero lo
cierto es que Piazzi Smyth no era un hombre que inspirase confianza, bastaba ver cómo se hacía el nudo de la corbata. Sin embargo, entre tantas tonterías también hay algunas verdades incontestables. ¿Quieren tener la bondad, señores, de acompañarme a la ventana?
La abrió de par en par con gesto teatral y nos invitó a asomarnos, nos mostró a lo lejos, en la esquina de su calle y la avenida, un kiosquito de madera donde debían de venderse billetes de lotería.
--Señores --dijo--, les invito a que vayan a medir aquel kiosco. Verán que la longitud del entarimado es de 149 centímetros, es decir la cien mil millonésima parte de la distancia entre la Tierra y el Sol. La altura posterior dividida por el ancho de la ventana da 176/56 = 3,14. La altura anterior es de 19 decímetros, que corresponde al número de años del ciclo lunar griego. La suma de las alturas de las dos aristas anteriores y de las dos aristas posteriores da 190 x 2 + 176 x 2 = 732, que es la fecha de la victoria de Poitiers. El espesor del entarimado es de 3,10 centímetros y el ancho del marco de la ventana es de 8,8 centímetros. Si reemplazamos los números enteros por la letra alfabética correspondiente tendremos C10 H8, que es la fórmula de la naftalina.
--Fantástico --dije--. ¿Lo ha verificado?
--No. Pero un tal Jean-Pierre Adam lo hizo con otro kiosco. Supongo que estos kioscos tienen más o menos las mismas dimensiones. Con los números se puede hacer cualquier cosa. Si tengo el número sagrado 9 y quiero obtener 1.314, fecha en que quemaron a Jacques de Molay, una fecha señalada para quien como yo se considera devoto de la tradición caballeresca templaria, ¿qué hago? Multiplico por 146, fecha fatídica de la destrucción de Cartago. ¿Cómo he llegado a ese resultado? He dividido 1.314 por dos, por tres, etcétera, hasta encontrar una fecha satisfactoria También hubiera podido dividir 1.314 por 6,28, el doble de 3,14, y habría obtenido 209. Que es el año en que ascendió al trono Atalo I, rey de Pérgamo. ¿están satisfechos?
Yo si. Recuerdo que cuando lei este parrafo me hizo partirme de la risa, sobre todo lo de la naftalina. Muchos años despues llego Iker Jimenez en la "Nave del Misterio", poniendo morritos de asombro y sacando los ojos de los cuevanos cada vez que un "experto" le abria delante de los ojos una baraja equivalente de insensateces. El articulo de Tellagorri me recordo este texto, que he buscado para compartirlo con Vds.
0 comentarios :
Publicar un comentario